

Basic Understanding of Transmutation

Steve Sheetz

Savannah River National Laboratory
Program Manager, Small Modular Reactor Pursuit Team

June 26, 2012

Citizens Advisory Board - Nuclear Materials Committee

Purpose

- To fulfill Nuclear Materials Committee 2012 Work Plan Topic
- Address a request from the Nuclear Materials Committee / CAB
- Provide a basic explanation of transmutation and its uses
- Describe transmutation of waste

Transmutation: A Definition

An act or instance of transmuting or being transmuted:

a: the conversion of base metals into gold or silver

b: the conversion of one element or nuclide into another by natural or artificial nuclear reaction

Bombard with Neutrons to create:

- Isotopes
- Fission products

Isotopes and Fission Products

<u>Isotope</u>: An element with the same number of <u>Protons</u> but varying numbers of <u>Neutrons</u> – same atomic number but varying atomic mass

- About 1600 isotopes have been characterized
- Either stable or unstable (radioactive)
- Example: Co-59 + neutron => Co-60

Fission Products: The atomic fragments left after a larger atom fissions. Example - Uranium 235 often breaks into Cesium-137 and Strontium-90

How Neutrons Cause Transmutation

Sources of Neutrons for Transmutation

Thermal Neutrons

Light Water Reactors

Fast Neutrons

- Fast Reactors
- Accelerator Driven Sub-Critical Reactors

Production or Destruction

Isotope Production

- Nuclear medicine
 - Diagnostic
 - Treatment
- Industrial
 - Inspection/testing
 - Sterilization
- Defense
 - Pu-239
 - Tritium

Waste Destruction

- Reduce radiotoxicity
- Destroy excess Pu

Northshore Medical Accelerator

Savannah River Isotopes through the years...

What is in Used Nuclear Fuel?

- 95.6% is uranium
- 3% is stable or shortlived fission products
- 0.3% is cesium and strontium
- 0.1% is long-lived iodine and technetium
- 0.9% is plutonium
- 0.1% is long-lived actinides

COLOR KEY

- ☐ Recycle/LLW
- □ Repository
- ☐ Transmute Capture
- ☐ Transmute Fission

Transmutation and Used Fuel Management

06-GA50559-

Green = Light Water Recycle Orange = Transmutation with Fast Neutrons

Effects of Transmutation of Commercial Fuel

Summary – Transmutation of Waste

Benefits:

- Reduce volume
- Reduce radiotoxicity
- Destroy Plutonium
- Simpler repository

Challenges:

- Partitioning
- Costs
- Proliferation questions
- Technology development

Savannah River's Current Role in Waste Transmutation

- This presentation for information only
- No currently budgeted programs
- Savannah River National Laboratory support has been task based from other programs
- Prior support provided on the following programs:
 - Accelerator Transmutation of Waste (ATW)
 - Advanced Fuel Cycle Initiative (AFCI)
 - Global Nuclear Energy Partnership (GNEP)

Acronyms

AFCI Advanced Fuel Cycle Initiative

ATW Accelerator Transmutation of Waste

Co Cobalt

GNEP Global Nuclear Energy Partnership

Li Lithium

LLW Low-Level Waste

LWR Light Water Reactor

MA Minor Actinides

Np Neptunium

Pu Plutonium

SMR Small Modular reactor

U Uranium

Resources / References

- http://nuclear.gov/pdfFiles/AFCI CongRpt2003.pdf\
- http://www.isotopes.gov/outreach/reports/Medical_Isotope
 Production_Use.pdf
- http://nuclear.energy.gov/pdfFiles/afciFy2005StatusRptTo Congress.pdf
- kth.diva-portal.org/smash/get/diva2:404488/FULLTEXT01

Backup Slides

Backup Slides

Fast Versus Thermal Neutrons

Transmutation of Iodine–129

Neutron Capture Neutron Capture Non-Radioactive Neutron Non-Radioactive Xe-130

BETA PARTICLE

What are fission products?

- Broken parts from the fission of actinides
- Cesium-137 and Strontium-90 most common
- Approximately 30 year halflives

What are Actinides?

- Elements between atomic numbers between 89 and 104
- Uranium (U), plutonium (Pu), neptunium (Np), americium (Am), and curium (Cm) determine the long term toxicity and heat load of spent nuclear fuel
- Transuranics: higher than Uranium and include Np, Pu, Am and Cm
- Minor actinides: due to relatively low percentages in the isotopic mix in spent fuel Np, Am, and Cm

